All H atoms refined $w=1 /\left[\sigma^{2}\left(F_{o}\right)\right.$
$\left.+0.00001\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.01$
Table 1. Selected geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Sn}-\mathrm{Cll}$	2.436 (1)	$\mathrm{N} 1-\mathrm{C}$	1.314 (5)
$\mathrm{Sn}-\mathrm{Cl} 2$	2.429 (1)	$\mathrm{N} 2-\mathrm{C}$	1.316 (5)
$\mathrm{Sn}-\mathrm{Cl} 3$	2.422 (1)	N3-C	1.312 (4)
$\mathrm{Cll}-\mathrm{Sn}-\mathrm{Cll}^{\text {i }}$	88.35 (5)	$\mathrm{Cl2}-\mathrm{Sn}-\mathrm{Cl} 3$	89.90 (4)
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{Cl}_{2}$	91.05 (3)	$\mathrm{Cl2}-\mathrm{Sn}-\mathrm{Cl}^{1}{ }^{\prime}$	90.21 (4)
$\mathrm{Cl1}-\mathrm{Sn}-\mathrm{Cl2}^{2}$	88.84 (3)	$\mathrm{Cl3}-\mathrm{Sn}-\mathrm{Cl3}^{\prime}$	91.24 (6)
$\mathrm{Cl1-Sn} \mathrm{Cl}_{3}$	90.21 (3)	$\mathrm{N} 1 . \mathrm{C} \ldots \mathrm{N} 2$	120.3 (3)
$\mathrm{Cll}-\mathrm{Sn}-\mathrm{Cl}_{3}{ }^{3}$	178.07 (4)	$\mathrm{N} 1-\mathrm{C}-\mathrm{N} 3$	120.0 (4)
$\mathrm{Cl2}-\mathrm{Sn}-\mathrm{Cl2}^{1}$	179.84 (6)	$\mathrm{N} 2-\mathrm{C}-\mathrm{N} 3$	119.7 (4)

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.
Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	$\mathrm{H} \cdots \mathrm{A}$	D. \cdot A	$D-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 2$	0.81 (3)	2.63 (4)	3.414 (4)	164 (4)
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{Cl1}{ }^{\prime}$	0.83 (3)	2.63 (3)	3.429 (4)	162 (3)
$\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{Cl3}$	0.84 (4)	2.63 (4)	3.456 (4)	170 (4)
$\mathrm{N} 2-\mathrm{H} 4 \cdots \mathrm{Cl2}{ }^{\prime \prime}$	0.87 (3)	2.56 (4)	3.413 (4)	168 (4)
N3-H5 - $\mathrm{ClO}^{\prime \prime}$	0.77 (3)	2.66 (3)	3.421 (4)	166 (3)
N3-H6 \cdots Cl3	0.84 (4)	2.62 (4)	3.439 (4)	167 (3)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997). Program(s) used to solve structure: SIR92 (Altomare et al., 1993). Program(s) used to refine structure: TEXSAN for Windows. Software used to prepare material for publication: TEXSAN for Windows.

This work was partly supported by a Grant-in-Aid for Scientific Research (B) (No. 10440208) from the Ministry of Education, Science, Sports and Culture, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1486). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.

Farrugia, L. J. (1997). ORTEP-3 for Windows. University of Glasgow, Scotland.
Furukawa, Y. \& Nakamura, D. (1986). Bull. Chem. Soc. Jpn, 59, 2642-2644.
Ikeda, R., Kume, Y., Nakamura, D., Furukawa, Y. \& Kiriyama, H. (1976). J. Magn. Reson. 24, 9-24.

Ishida, H., Higashiyama, T., Hayama, N. \& Ikeda, R. (1992). Z. Naturforsch. Teil A, 47, 1087-1090.
Kitahama, K., Kiritama, H. \& Baba, Y. (1979). Bull. Chem. Soc. Jpn, 52, 324-328
Knop, O., Cameron, T. S., James, M. A. \& Falk, M. (1983). Can. J. Chem. 61, 1620-1646.
Knop, O., Oxton, I. A. \& Falk, M. (1979). Can. J. Chem. 57, 404-423, 2003.

Molecular Structure Corporation (1990). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Scattering factors from International Tables for Crystallography (Vol. C)

Molecular Structure Corporation (1997). TEXSAN for Windows (Version 1.03) and Single Crystal Structure Analysis Software (Version 1.04). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381. USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Strange, J. H. \& Terenzi, M. (1972). J. Phys. Chem. Solids, 33, 923933.

Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1999). C55, 1997-2000

Diaquabis(hydrogen phthalato)copper(II), a new phase

Bernardo Lages Rodrigues, Marcia D. D. Costa and Nelson G. Fernandes
Department of Chemistry, Federal University of Minas Gerais, CP 702, 31270-901 Belo Horizonte, Brazil. E-mail: blrodrig@dedalus.lcc.ufmg.br

(Received 20 April 1999; accepted 9 September 1999)

Abstract

In the title compound, $\beta-\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, the Cu atom lies on an inversion centre and has a tetragonal distortion from octahedral symmetry. Each hydrogen phthalate ligand is coordinated to two metals, forming a polymeric structure. The aromatic ring and the carboxylate group form an approximate plane, with the carboxylic acid group plane almost perpendicular to it. An intermolecular hydrogen bond between hydrogen phthalate groups is observed, with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.614 (2) \AA.

Comment

The structure of $\alpha-\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (II), has been reported by Goeta et al. (1993), Bartl \& Küppers (1980) (neutron data), Cingi et al. (1969) and Cingi \& Magnano (1959). In that phase, as well as in structures such as $\left[\mathrm{Co}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Küppers, 1990), $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Kariuki \& Jones, 1989), $\left[\mathrm{Li}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Küppers et al., 1985) and [Li$\left.\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$ (Küppers et al., 1981), the ligand shows a planar configuration, having a short intramolecular hydrogen bond between the two carboxylate groups, with $\mathrm{O} \cdots \mathrm{O}$ distances of around $2.4 \AA$. On the other hand, crystals of $\mathrm{K}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right) \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Kariuki \& Jones, 1995), $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}$ (Kariuki \& Jones, 1993) and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)$ (Jessen, 1990) do exhibit an intermolecular hydrogen bond once the carboxylate and carboxylic acid groups form two planes approximately perpendicular to each other. The structure reported here, $\beta-\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, (I), belongs to the latter

© 1999 International Union of Crystallography

Printed in Great Britain - all rights reserved

Acta Crystallographica Section C ISSN 0108-2701 © 1999
group, i.e. hydrogen phthalate anions are linked through a moderate hydrogen bond, with the two O atoms separated by 2.614 (2) \AA. This structure is isomorphous with the manganese compound (Bats et al., 1978). Therefore, diaquabis(hydrogen phthalato)copper(II) has at least two phases in the solid state, one presenting a short and the other a long hydrogen bond. The metal alone is probably not responsible for the type of hydrogen bonding.

(I)

(II)

The Cu atom lies on an inversion centre coordinated to six O atoms. The arrangement is a tetragonal dis-
tortion from octahedral symmetry, as shown in Fig. 1 and Table 1. The aromatic ring has similar $\mathrm{C}-\mathrm{C}$ distances and angles, with mean values of 1.382 (2) \AA and $120.0(2)^{\circ}$, respectively. As can be seen in Table 1 , the carboxylate group has two $\mathrm{C}-\mathrm{O}$ bond distances with the same value. On the other hand, it is easy to distinguish between the single and double bonds in the carboxylic acid group. The aromatic ring forms angles of 7.19 (9) and $89.74(5)^{\circ}$ with the carboxylate and carboxylic acid groups, respectively. Only O4 acts as an acceptor of all three hydrogen bonds (Fig. 1 and Table 2); one of them is weak and involves water, while the other two are of moderate strength, with one forming a six-membered ring $(\mathrm{Cu}, \mathrm{O} 3, \mathrm{C} 7, \mathrm{O} 4, \mathrm{HW1}$ and O5) and the other approximately in the plane of this ring (Fig. 1).

It is helpful to make a comparison between the two phases of $\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$. In the α-phase (previous work, short hydrogen bond), the whole ligand is planar. In the β-phase (present work, long hydrogen bond), the carboxylate group and the aromatic ring are in a plane perpendicular to the plane defined by the carboxylic acid group. However, it is interesting to note that these different configurations do not result in changes in the interatomic distances of equivalent bonds in the ligand, except in the hydrogen bond. In the α-phase, the metal is coordinated to six O atoms in a highly distorted octahedral geometry; $\mathrm{Cu}-\mathrm{O}_{\mathrm{axial}}$ bond

Fig. 1. ORTEPIII (Burnett \& Johnson, 1996) drawing of the crystal packing in (I), with displacement ellipsoids at the 50% probability level. Hydrogen bonds are drawn as dotted lines. [Symmetry code: (i) $x, y-1, z$.]
lengths are $2.636 \AA$, as determined by Bartl \& Küppers (1980). The angle between these long $\mathrm{Cu}-\mathrm{O}$ bonds and the equatorial plane is 54.3°. On the other hand, in the β-phase, all $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles are close to 90° and the axial distortion is less pronounced (Fig. 1 and Table 1). It is also important to emphasize that in both phases, the bidentate ligands form polymeric structures. However, only in the α-phase is the ligand a chelate, meaning that, in the α-phase, the polymeric structure is maintained only by moderate hydrogen bonds, while in the β-phase, the metal-oxygen bonds also contribute to the polymeric structure (Fig. 1).

Experimental

Blue single crystals of the title compound were obtained by addition of copper carbonate to an aqueous solution of phthalic acid in such a way that the resulting solution had a 20% excess of the acid. Prussian blue crystals of the α-phase were also formed in the solution.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=429.83$
Monoclinic
$P 2_{1} / c$
$a=13.177$ (2) \AA
$b=5.111$ (1) \AA
$c=12.972(2) \AA$
$\beta=116.63(1)^{\circ}$
$V=780.9(2) \AA^{3}$
$Z=2$
$D_{x}=1.828 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer

$\theta-2 \theta$ scans
Absorption correction:
analytical (JANA98;
Petricek \& Dusek, 1998)
$T_{\text {min }}=0.68, T_{\text {max }}=0.85$
3065 measured reflections
2281 independent reflections
2000 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.029$
$w R\left(F^{2}\right)=0.092$
$S=1.11$
2193 reflections
146 parameters
Only coordinates of H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.067 P)^{2}\right]$, where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$ $(\Delta / \sigma)_{\text {max }}<0.001$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 37 reflections
$\theta=5.0-14.0^{\circ}$
$\mu=1.46 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prismatic
$0.28 \times 0.25 \times 0.14 \mathrm{~mm}$ Blue
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=30^{\circ}$
$h=-18 \rightarrow 17$
$k=-7 \rightarrow 1$
$l=-1 \rightarrow 18$
3 standard reflections every 100 reflections intensity decay: 1.1%

$$
\begin{aligned}
& \Delta \rho_{\max }=0.40 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.43 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \\
& \quad \text { SHELXL93 (Sheldrick, } \\
& \text { 1993) } \\
& \text { Extinction coefficient: } \\
& 0.019 \text { (3) } \\
& \text { Scattering factors from } \\
& \text { International Tables for } \\
& \text { Crystallography (Vol. C) }
\end{aligned}
$$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cu}-\mathrm{Ol}^{1}$	2.461 (1)	$\mathrm{Cl}-\mathrm{C} 6$	1.396 (2)
$\mathrm{Cu}-\mathrm{O} 3$	1.944 (1)	$\mathrm{Cl}-\mathrm{C} 7$	1.496 (2)
$\mathrm{Cu}-\mathrm{O} 5$	1.974 (1)	C2-C3	1.392 (2)
$\mathrm{Ol}-\mathrm{C} 8$	1.210 (2)	C2-C8	1.497 (2)
$\mathrm{O} 2-\mathrm{C} 8$	1.312 (2)	C3-C4	1.387 (2)
$\mathrm{O} 3-\mathrm{C} 7$	1.256 (2)	C4-C5	1.375 (3)
O4-C7	1.256 (2)	C5-C6	1.383 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.393 (2)		
$\mathrm{Ol}^{1}-\mathrm{Cu}-\mathrm{O} 3$	91.57 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.4 (1)
$\mathrm{Ol}^{1}-\mathrm{Cu}-\mathrm{O} 5$	94.05 (5)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 8$	123.2 (1)
O3-Cu-O5	92.52 (5)	C2-C3-C4	119.9 (2)
$\mathrm{Cu}-\mathrm{Ol}^{1}-\mathrm{C}^{1}$	130.7 (1)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	120.1 (1)
$\mathrm{Cu}-\mathrm{O} 3-\mathrm{C} 7$	131.8(1)	C4-C5-C6	120.1 (2)
$\mathrm{C} 8-\mathrm{O} 2-\mathrm{HO} 2$	108 (3)	Cl-C6-C5	120.9 (2)
$\mathrm{Cu}-\mathrm{O} 5-\mathrm{HWl}$	108 (3)	O3-C7-O4	124.5 (1)
$\mathrm{Cu}-\mathrm{O} 5-\mathrm{HW} 2$	117 (3)	O4-C7-- Cl	119.5 (2)
$\mathrm{HW} 1-\mathrm{O}-\mathrm{HW} 2$	108 (3)	O3-C7-C1	116.0 (3)
C2--C1-C6	118.6(1)	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 2$	124.8 (1)
$\mathrm{C} 2-\mathrm{C}-\mathrm{C} 7$	121.3(1)	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 2$	$111.2(1)$
C6-Cl-C7	120.1 (1)	$\mathrm{Ol}-\mathrm{C} 8-\mathrm{O} 2$	123.8 (1)
C3-C2-C8	116.4(1)		

Symmetry code: (i) $x, y-1, z$.
Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	D-H	H...A	D. ${ }^{\text {A }}$	$D-\mathbf{H} \cdots A$
O2-HO2 . . O^{1}	0.70 (4)	1.92 (4)	2.614 (2)	171 (4)
O5-HW1...O4	0.79 (4)	1.90 (4)	2.635 (2)	155 (4)
O5—HW2 . $\mathrm{O}^{\prime \prime}$	0.76 (4)	2.34 (4)	3.060 (2)	159 (4)

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $-x, y-\frac{1}{2},-\frac{1}{2}-z$.
Refined C-H distances are in the range 0.82 (4)-0.96 (4) \AA.
Data collection: XSCANS (Siemens, 1991). Cell refinement: XSCANS. Data reduction: JANA98 (Petricek \& Dusek, 1998). Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPIII (Burnett \& Johnson, 1996). Software used to prepare material for publication: PLATON (Spek, 1990).

This work has been supported by the Minas Gerais Foundation for Research Development (FAPEMIG) under grant No. CEX 1123/90. BLR is grateful to FAPEMIG for providing a Graduate Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1480). Services for accessing these data are described at the back of the journal.

References

Bartl, H. \& Küppers, H. (1980). Z. Kristallogr. 152. 161-167.
Bats, J. W., Kallel, A. \& Fuess, H. (1978). Acta Cryst, B34, 17051707.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.

Cingi, M. \& Magnano, G. (1959). Ateneo Parmense, 30(S1), 244-250.
Cingi, M. B., Guastini, C., Musatti, A. \& Nardelli, M. (1969). Acta Cryst. B25, 1833-1840.
Goeta, A. E., Rigotti, G., Sileo, E. E. \& Blesa, M. A. (1993). Solid State Ionics, 62, 159-165.
Jessen, S. M. (1990). Acta Cryst, C46, 1513-1515.
Kariuki, B. M. \& Jones, W. (1989). Acta Cryst. C45, 1297-1299.
Kariuki, B. M. \& Jones, W. (1993). Acta Cryst, C49, 2100-2102.
Kariuki, B. M. \& Jones, W. (1995). Acta Cryst, C51, 1128-1130.
Küppers, H. (1990). Z. Kristallogr. 192, 97-102.
Küppers, H., Kvick, Å. \& Olovsson, I. (1981). Acta Cryst. B 31, 12031207.

Küppers, H., Takusagawa, F. \& Koetzle, T. F. (1985). J. Chem. Phys. 82, 5636-5647.
Petricek, V. \& Dusek, M. (1998). JANA98. Crystallographic Computing System. Institute of Physics. Academy of Sciences of Czech Republic, Praha, Czech Republic.
Sheldrick, G. M. (1990). SHELXTLIPC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

Acta Cryst. (1999). C55, 2000-2002

A rhenium(V)-arylimide species incorporating pyridine-2-aldimine chelation

Sangeeta Baneriee, Sibaprasad Bhattacharyya, Indranil Chakraborty and Bimal Kumar Dirghangi

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India. E-mail: icbd@mahendra.iacs.res.in
(Received 7 June 1999; accepted 9 August 1999)

Abstract

The title compound, (4-aminophenylimido)trichloro[2-(4-chlorophenyliminomethyl)pyridine]rhenium (V), [Re$\left.\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right) \mathrm{Cl}_{3}(\mathrm{ClA})\right]$, where ClA is N - p-chloro-phenyl)pyridine-2-aldimine ($p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{5} \mathrm{H}_{4} \mathrm{~N}$), was synthesized by reacting the corresponding oxo complex, $\left[\mathrm{ReOCl}_{3}(\mathrm{ClA})\right]$, or the corresponding phosphine oxide complex, $\left[\mathrm{Re}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}(\mathrm{ClA})\right]$, with p-phenylenediamine in toluene. The structure determination revealed that the $\mathrm{ReCl}_{3} \mathrm{~N}_{3}$ coordination sphere is severely distorted from octahedral geometry and that it has a meridional ReCl_{3} fragment. The $\mathrm{Re}-\mathrm{N}-\mathrm{C}$ angle in the imide part is nearly linear and the $\mathrm{Re}-\mathrm{N}_{\text {imide }}$ bond can be considered to be triple bond in character. The Re atom is distorted towards the imide N atom by $0.29 \AA$ from the equatorial $\mathrm{Cl}_{3} \mathrm{~N}_{\text {imine }}$ plane. The $\mathrm{Re}-\mathrm{N}_{\text {pyridine }}$ bond is longer by $0.15 \AA$ than the $\mathrm{Re}-\mathrm{N}_{\text {imine }}$ bond due to the trans influence of the imide fragment.

Comment

High-valent rhenium complexes with metal-ligand multiple bonds, e.g. imido or oxo complexes, have been of increasing interest in inorganic chemistry (Wang et al., 1993; Nugent \& Mayer, 1988). In the course of our search for new and reactive oxorhenium(V) species, we isolated a pyridine-2-aldimine-chelated $\mathrm{Re}^{\vee} \mathrm{O}$ species, (2), which undergoes O-atom transfer to
PPh_{3}, affording an $\mathrm{Re}^{\mathrm{III}} \mathrm{OPPh}_{3}$ species, (3) (Dirghangi, Menon, Pramanik \& Chakravorty, 1997). Both (2) and (3) were found to react with ArNH_{2}, furnishing $\mathrm{Re}^{\vee} \mathrm{NAr}$ species which undergo inward O -atom transfer from water followed by metal oxidation to give rare $\mathrm{Re}^{\mathrm{Vl}} \mathrm{NAr}$ species incorporating 2-picolinamide chelation (Dirghangi, Menon, Banerjee \& Chakravorty, 1997; Banerjee et al., 1997). This work forms part of a program on the synthesis and characterization of new $\mathrm{Re}^{V} \mathrm{NAr}$ compounds.

The species of concern to us here is $\left[\operatorname{Re}\left(\mathrm{NC}_{6} \mathrm{H}_{4}-\right.\right.$ $\left.\left.\mathrm{NH}_{2}\right) \mathrm{Cl}_{3}(\mathrm{ClA})\right]$, (1), where ClA is N-(p-chlorophenyl)-pyridine-2-aldimine ($p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{CHC}_{5} \mathrm{H}_{4} \mathrm{~N}$). This was

(1)
synthesized from the oxo complex $\left[\mathrm{ReOCl}_{3}(\mathrm{ClA})\right]$, (2), or from the phosphine oxide complex $\left[\operatorname{Re}\left(\mathrm{OPPh}_{3}\right) \mathrm{Cl}_{3}-\right.$ (CIA)], (3), with p-phenylenediamine in toluene. A view of the molecular structure of (1) is shown in Fig. 1. The $\mathrm{ReCl}_{3} \mathrm{~N}_{3}$ coordination sphere is severely distorted from octahedral geometry. The ReCl_{3} fragment is meridionally disposed. The chelate ring [bite angle $\left.73.8(2)^{\circ}\right]$ along with the pyridine ring constitute a good plane (mean deviation $0.05 \AA$) with which the chlorophenyl group makes a dihedral angle of $61.6(3)^{\circ}$. The aryl group of the imide fragment makes a dihedral angle of $39.5(4)^{\circ}$ with the chlorophenyl group.
An interesting feature of the structure is that the pyridine and imide N atoms (N 1 and N 3 , respectively) bend towards each other in the direction of the $\mathrm{Re} / \mathrm{C} 12 / \mathrm{N} 2$ plane. Additionally, the metal atom is displaced from the $\mathrm{N} 2 / \mathrm{Cl} 1 / \mathrm{Cl} 2 / \mathrm{Cl} 3$ mean plane by $0.29 \AA$ towards N3. This distortion and bending is necessarily reflected in deviations of the trans angles from 180° [range $162.8(1)-165.2(2)^{\circ}$] and in deviations of the cis angles with respect to N 1 and N 3 from 90° to the lower and higher side, respectively. Other cis angles are very close to 90°. This type of metal deviation is common to multiple-bonded metal-ligand complexes (Dirghangi, Menon, Banerjee \& Chakravorty, 1997; Shivakumar et al., 1998; Bélanger \& Beauchamp, 1999; Banerjee et al., 1997; Lahiri et al., 1987; Bakir \& Sullivan, 1995).

Among hexacoordinated $\operatorname{Re}^{\mathrm{v}} \mathrm{N} X$ (X is alkyl or aryl) structures (Bakir et al., 1992; Masood et al., 1994; Fung et al., 1995; Wang et al., 1993; Yan et al., 1995; Rossi et al., 1993; Dirghangi, Menon, Banerjee \& Chakravorty, 1997; Banerjee et al., 1997; Lahiri et al., 1987), the

